

Identification of clear AIRS fields

Mitchell D. Goldberg NOAA /NESDIS 05/16/01

BACKGROUND

- NESDIS will be distributing AIRS radiances to NWP centers in near real-time.
- NWP centers will assimilate clear radiances
- Need very good cloud detection algorithm

Objectives

 Provide information indicating if fov is clear with a confidence indicator.

- If not clear:
 - provide cloud amount and height.
 - indicate channels not affected by clouds

TOPICS

- AIRS instrument
- AIRS simulations
- Cloud detection
- Cloud height and amount
- Cloud Clearing

AIRS Instrument

- AIRS is a cooled grating array spectrometer
- Spectral coverage 3.7 to 15.4 microns in 17 arrays with 2378 spectral channels
- Spectral resolution $v/\Delta v=1200$, 15 km FOV from 705km orbit
- Primary products: temperature profile (< 1 K accuracy), moisture profile (< 15%)
- Accuracy is achieved in clear, cloud cleared, or above clouds

Measured Sensitivity (NEAT) Single Look (1.1° x 0.6° IFOV) - 250K Scene

AIRS Instrument

- AIRS also includes 4 visible/near-infrared channels
- Channel 1 (0.40 0.44 um) aerosols
- Channel 2 (0.58 0.68 um) (AVHRR ch. 1)
- Channel 3 (0.71 0.93 um) (AVHRR ch. 2)
- Channel 4 (0.48- 0.95 um) broadband

VIS/NIR Schematic of Ground Location

Note: 1/3 over sampling - actually 8 pixels per AIRS fov in cross track; pixel size ~ 2.28 km.

AIRS Visible and Near-IR channels

Figure 1.1: Approximate spectral response of the four Vis/NIR channels. The three solid curves are, from left to right, Channels 1, 2, and 3. The dashed curve is the response of Channel 4. Radiation damage over the five-year instrument lifetime will slowly degrade the longwave response of Channels 2, 3, and 4 (see Fig. 1.2).

AMSU and HSB Microwave Sounders

- AMSU and HSB are co-aligned with AIRS.
- AMSU has 42 km fov and is primarily a temperature sounder (15 channels)
- HSB has 15 km fov, moisture sounder (4 channels)
- AMSU and HSB are not affected by clouds (except for moderate-heavy precipitation)
- Provides "all weather capability"
- Provides clear estimate for cloud clearing
- Used in IR cloud detection tests.

NOAA NOONA N

AIRS Simulated Orbital Datasets

- Derived from the operational NCEP global model.
- Includes temperature, ozone, liquid water at 29 levels (1015 mb to 3 mb)
- Water vapor at 12 levels from 1015 to 300 mb.
- Water is extrapolated above 300 mb by q(300)*(p/300)**3.
- UARS climatology is append to the temperature above 3 mb.
- Data is interpolated to AIRS 3 x 3 locations within AMSU fov.

AIRS Orbital Datasets

- Includes surface topography and variable surface pressure
- Daytime and nighttime conditions
- T(p),q(p),o3(p) from surface to .005 mb.
- cloud liquid water profiles
- multiple level cloudy conditions with spectrally varying cloud emissivity and reflectivity, consistent with atmospheric conditions (clouds from global model,but cloud amounts are randomized)
- variable surface skin temperature, surface emissivity and surface reflectivity
- variable land coverage with coastlines, lakes, etc.
- variable view and solar zenith angles

IR Emissivity Model

Granite spectrum: IR handbook

Others: spline interpolation of CERES database Emissivity Model by Material (Index) with Hinge Points

AIRS Science Team Mtg 22 February 2001

Example of model cloud top pressure and amount

Example of simulated AIRS window channels: LW, SW

Simulated AMSU

Real AMSU

Simulated AMSU amsu Ch-5 ascending, 2000 Jun 18 30 -0 -30· -60 --120 -60 60 120 Ó 180 amsu Ch-5 descending, 2000 Jun 18 90 60 -30 -0. -30-60 --90 | - -180 -120 -60 120 60 À 180 Document: Done

Real AMSU

CLOUD DETECTION ALGORITHMS

- During the day VIS/NIR provides very accurate cloud mask – thresholds tests
- AIRS IR cloud detection algorithms rely on AMSU.
- MODIS type cloud thresholds tests can be used as well.
- Different approaches still under development.
- Append cloud detection information to NWP radiances products.

Clear Detection – Combination of 3 tests

• AMSU channels 4, 5 and 6 are used to predict AIRS channel at 2390.9 cm-1.

```
Predicted AIRS at 2390.9 = 11.327-.185*amsu4+1.930*amsu5-
0.777*amsu6+1.048*csza-4.243*(1.-cang)
where csza = cosine solar zenith angle
cang = cosine view angle (scan angle)
amsu4 = amsu channel 4 brightness temperature, etc
```

FOV is labeled "mostly clear" if predicted AIRS – observed AIRS
 < 2

AND IF

• SW LW IR window test is successful: [ch(2558.224)-CH(900.562)] < 10 K

Variability of 2390.910 radiance within 3x3 < 0.0026

AIRS 2390.91 Weighting functions

True clear (< 2%)

Cloud top pressure and amount retrieval

"TRUTH"

RETRIEVAL

Cloud top pressure and amount -- overall errors

Cloud top pressure and amount is very useful in omitting retrievals contaminated by clouds

Problem

- Very few AIRS fovs are clear. ~ 7% are truly clear.
- Should NWP centers use cloud cleared radiances?
- QA of cloud cleared radiances will be provided.
- Try to make use of imager data for QA.

- Rclear = R1 + (clear-est. R1) (R1-R2)
 (R1-R2)
- Need to check magnitude of "eta" to avoid cases of appreciable noise amplification.
- Problem is that clear estimate is from AMSU.
- Prediction of lower peaking AIRS channels from AMSU is poor.
- Clear estimate could come from somewhere else, such as from MODIS or NWP forecast.

Clouds above 500 mb

Cloud fraction >0.5

Cloud Cleared Radiance Product for NWP

- Cloud cleared radiances will have ancillary information such as:
- Cloud fractions and cloud top pressures of 3x3.
- Noise amplification (eta)
- Contrast.

Merging MODIS and AIRS

- High spatial resolution will improve determination of clear AIRS fovs.
- High spatial resolution will greatly improve clear estimate needed for cloud clearing.
- Rclear = R1 + (clear-est. R1) (R1-R2)
 (R1-R2)

Summary

- Work in progress
- Current cloud detection algorithm seems to be reasonable.
- Experiment with "MODIS" threshold tests.
- Cloud top pressure and amount retrieval is important for determining "good" retrievals.
- Combining MODIS and AIRS may improve determination of clear AIRS fovs and derivation of cloud cleared AIRS radiances.
- Assimilating cloud-cleared radiances should be considered.